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SIMULTANEOUS PELL EQUATIONS 

W. S. ANGLIN 

ABSTRACT. Let R and S be positive integers with R < S. 'We shall call the 
simultaneous Diophantine equations 

x - Ry2 = 1, 

z - Sy2 = 1 

simultaneous Pell equations in R and S. Each such pair has the trivial so- 
lution (1, 0, 1) but some pairs have nontrivial solutions too. For example, if 
R = 11 and S = 56, then (199, 60, 449) is a solution. Using theorems due to 
Baker, Davenport, and Waldschmidt, it is possible to show that the number 
of solutions is always finite, and it is possible to give a complete list of them. 
In this paper we report on the solutions when R < S < 200. 

Let R and S be positive integers with R < S. We shall call the simultaneous 
Diophantine equations 

x2 - Ry2 = 1 

z2 - Sy2 = 

simultaneous Pell equations in R and S. Each such pair has the trivial solution 
(1,0,1) but some pairs have nontrivial solutions too. For example, if R = 11 
and S = 56, then (199,60,449) is a solution. Indeed, there are infinitely many 
simultaneous Pell equations with nontrivial solutions, as can be seen by taking 
y = 2, R = k2 + k, and S = m2 + m. Using theorems due to Siegel [4, ?1] and 
Baker [1], it is possible to show that the number of solutions is always finite, and it 
is possible to give a complete list of them. This is exactly what we have done, for 
all 19,900 simultaneous Pell equations with R < S < 200, and this paper, precisely, 
is a report on our method and results. 

Note that the term 'simultaneous Pell equations' could be defined to apply to 
other pairs, such as 

x2 _y2= 1, x 2-R y2= 

Z2 sX2 . 

There are other variants as well, including the 'simultaneous Pellian equations' 
solved in an article by R. G. E. Pinch [3] which overlaps this paper to some extent. 
All these 'simultaneous Pells' can be solved using methods similar to those described 
here. 

Some of the simultaneous Pell equations under consideration in this paper can 
be solved simply by factoring. This is the case if R or S or RS is a square. In the 
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latter case, if ItS = U2, we lhave 

(Sx - U z)(Sx + Uz) = S(S - R?), 

lea(ling to finitely rmany solutions (since the riglht-lhand si(le lh.s only finitely rmany 
factorizations, each of which lea(1s to a unique pair (x, z)). In(lee(d, in this case, we 
can put boun(ds on x an(1 y a.s follows: 

o < 1,x < S(S - R) + 1 < S - 
R + I 

o < IyI < x 

\NVhen Rt < S < 200, there are only two pairs of this sort witlh nontrivial solutions. 
Wh lien 1? = 3 a.nd S = 48, we lhave a sirmultaneous solution witlh y = 1. \h lien R = 2 
an(1 S = 72, we lhave a sirmultaneous solution witlh y = 2. 

Note that if Rt a.nd S lhave the sarme square factor n2, any solutions can be 
obtaine(d by solving the sirmultaneous Pell equations in R/n2 and S/n2. 

In the general case, we procee(d in accor(lance witlh the following tlleory. Let 
(a, b) be the least positive integer solution of ,X2 - fty2 = 1. There is a stan(lard 
simI)le continued fraction metho(d for generating the integers a and b, and we use(1 
it, in connection witlh Mathematica, to fin(d a an(1 b for all R? < 200 [2, ?7.8]. Let 
A = a + b ft. The largest a for any ft < 200 is 

a = 2, 469, 645, 423, 824, 185, 801 

for ft = 181. Hence, if ft < 200, then a < 3 x 1018. Since a2 - Rb2 = 1, it folloWs 

that bvft < a. Hence, 

A = (a + b < 6 x 1018. 

Note that whlen t = 3, then A = 2 + 3, an(1 this is the srmallest value obtaine(d 
by A, for any ft. 

Sirmilarly, if (a', b') is the least positive integer solution of ,V2 - Sy2 - 1, an(1 
A' = a/ + b' 5, tlhen, assurming S < 200, 

2 + 3 < A' < 6 X O8. 

The Neronrt height of any algebraic nurmber is (lefine(d a.s follows. If r is algebraic, 
there is a unique polynomial I-(x) in Z[x] witlh positive leading coefficient c and 
relatively prime coefficients such that r is a root of this polynomial. The roots of 
this 'rminirmial polynormial' for r are the 'conjugates' r' of r. The 'rmeasure' AI(r) of 
r. is 

r~~~~~~~~~~~~~~~~~01 1. All(Tr) = c II mtax(l, T,/I), 

an(l the Neronri height of r' is 

In Al (r) 
(leg r 

whlere (leg T is the (legree of f'(x). I For exampI)le, the nurmber A = a + bft lha.s 

minimiial polynomia.l ,X2 - 2ax + 1 an(1 rmeasure A. Its Neron lheiglht H is tlhus 
2ln A < 22. Sirnilarlv, the Neron lheiglht II' of A' is < 22, an(d, finally, if E = S/I?, 
then II" = Neron Heiglt (E) < ln S < 3 (since S < 200). W hat is imp)ortant for -2_ 
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wla.t follows is tha.t the six nurmbers H, H', H", In A, inA' , an(1 In F a.re all 4 4 4 
boun(le(d by V = 22. 

Now all the nonnegative solutions of 9X2 _Ry2 = 1 are given by 

Arr' + A-rr 

2 

Arr' - A-rr 
y VM - - 

2, 
- 
1? 

for m = 0, 1, 2, . All the nonnega.tive solutions of Z2 - sy2 1 are given by 

A'n + A-n' 
z = = 

A/In - A/- 
y =tn 2 - S 

for n = 0, 1, 2, . To solve the sirmultaneous Pell equations, it suffices to fin(d all 
(n, n) such tha.t '0rn = t,. Whlen m = 0 or n = 0, then y = 0, a.n( we lhave only 
trivia.l solutions. Whlen m a.n(li n are positive, t)ut at least one of tlhermi is < 3, we 
lave 407 nontrivia.l solutions. It is a. routine rmatter to fin(d tlhermi. 

In or(ler to find otlher nontrivia.l solutions, or to prove that we lhave not overlooked 
any nontrivia.l solutions, the following tlheorems a.re irmportant. 

Theorem 1. Suppose none of the positive integers 1R, S, RS is a square. If K 
2 + 3 and m, n > 2 are such that '0rn = tn, then 

0 < ImlnA - nInA' + InEl < K-I<Ix(til) 1 

where E = S/I?. 

Proof. If In EArA'A` = 0, then 

VS-(a + b\t)rl = \/-?(a'/ + b' 5)fl, 

so tlhat, for some nonzero integers c, d, e, and f, 

S( - + d \) R (e + f 5) 

a.n(1 

S(c?+(d-f) R)=e \t. 

When we squa.re this, we see tha.t d = f (since I? is irrational) an(1 hence SC2 
Re2. Since c an(1 e are nonzero, this mea.ns tha.t RS is a. square contrary to 
a.ssumption. 

For the otlher inequalities, it suffices to show tha.t 

JEAr'A/-'n - 11 < K- iiix(rnn) 
2 

-- since the slope of the log function is < 2 whlen x > 1/2 an(d hence 

Ix-1I < c I InxI < 2c. 

Since r= t,, we hiave 

Arr' A-r ' A'n - Al-n 

IR = 3S 
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so tha.t 

E(Arr' - rr') = Aln_ Al-n, 

EArr'A/-n - EA- t'A/-n = 1 A -2n 

EA rr'A'n - 1 = EA-rrA'A - A/ 

If this is positive, then 

EArr'A-n - 11 < EA-rr'A'-n < EK-t < K- 
2 

withi the last inequality following from the fact that 2E < 20 < K3 < KI11i(in). 
And we get the same result if EA"rA' - 1 is negative. D 

Theorem 2 (WValdschmidt). Let A, A', E be nonzero, nonnegative algebraic num- 
bers, each of degree at least 2. Suppose 4 is the degree of Q(A, A', E) over Q. 
Let m and n be integers > 2. Let L = ImlnA - nInA + InEt > 0. Let V be 
a positive integer greater than each of the Ne'ron Heights of A, A', and E, and 
also greater than each of the absolute values of their natural logs divided by 4. Let 
W = max(lnm,lnrn) (so that eW = max(m,rn)). Then 

L > exp(-281 V3 (W + ln(4eV)) ln(4eV)). 

Proof. See [5]. 

In our case (with R < S < 200), we can take V = 22 (see above), so that, by 
Theorem 1, if m and n both exceed 2, we have 

K- max(m n) > L > exp(-281223(W + 6)(6)) 

(since ln(88e) = 5.4773), and hence 

exp(281223(W + 6)6) > Kew, 

so that 

281223(W + 6)6 > ew lnK 

and, dividing by (W + 6) In K, 

1.2x 1029 W 6 

When W > 0, the function eW/(W + 6) is increasing, so this allows us to conclude 
that W < 72 and hence max(m, n) < e72 < 1033. 

This impractical bound can in practice be lowered using 

Theorem 3 (A special case of Davenport's Lemma). Let x1 be a decimal approxi- 
mation to (In A)/ In A', accurate to 80 decimal places. Let f /g and f'/g' be consec- 
utive simple continued fraction convergents of x1 such that g < 1039 but g' > 1039. 
Suppose m and n are as above (and hence bounded by 1033). Then, if the distance 
between 

gInE InS-lnR 
mnA 

= 
2InA1 

and the nearest integer exceeds 3/106, then m < 80. (If the distance between 
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(gIn E)/ In A' and the nearest integer is less than 3/106, then that nearest inte- 
ger is fm - gn.) 

Proof. See [1]. C1 

Let us call the ordered pair (R, S) Davenportable (at level 3/106) if the dis- 
tance between (g In E)/In A' and the nearest integer exceeds 3/106. If (R, S) is 
Davenportable, then m is bounded by 80. If m, n > 2, then n is the integer nearest 

m ln A + in E 

In A' 
(see Theorem 1 above) so it is easy to calculate the corresponding n's. From our 
computations - carried out using Mathematica on an IBM XP 486 - we found 
that there are, in fact, no non-Davenportable pairs with R < S < 200. Hence for 
all the simultaneous Pell equations under consideration here, m < 80. 

For each triple (m, A, A') with 2 < m < 80 we checked the inequality of 
Theorem 1, 

0 < lmlnA-nlnA' + - lnS- -lnRf <K 2 2 (2+ v/3-) m 

to see if we might possibly have vm = tn. If the inequality held, we then calculated 
vm and tn to see if, indeed, they were equal. This, in fact, did not ever occur 
(with m, n > 2), so that we were able to conclude that the only simultaneous Pell 
equations with nontrivial solutions and R < S < 200 were the 407 pairs with m or 
n K 2 which we had already obtained. In conclusion, we have 

Theorem 4. With R and S in the range up to 200, there are no solutions to the 
simultaneous Pell equations with both m and n > 2. Indeed, the only case in which 
either of m and n is > 2 is the case with R = 3 and S = 176, when m = 3 and 
n = 1 give a solution. Finally, with R and S in the range up to 200, there are no 
simultaneous Pell solutions (x, y, z) with y > 120. 
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