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SIMULTANEOUS PELL EQUATIONS

W. S. ANGLIN

ABSTRACT. Let R and S be positive integers with R < S. We shall call the
simultaneous Diophantine equations

z2 - Ry2 =1,

22 - 85y? =1
simultaneous Pell equations in R and S. Each such pair has the trivial so-
lution (1,0,1) but some pairs have nontrivial solutions too. For example, if
R =11 and S = 56, then (199, 60, 449) is a solution. Using theorems due to
Baker, Davenport, and Waldschmidt, it is possible to show that the number

of solutions is always finite, and it is possible to give a complete list of them.
In this paper we report on the solutions when R < S < 200.

Let R and S be positive integers with R < S. We shall call the simultaneous
Diophantine equations

22 - Ry? = 1,
22-8yr = 1

simultaneous Pell equations in R and S. Each such pair has the trivial solution
(1,0,1) but some pairs have nontrivial solutions too. For example, if R = 11
and S = 56, then (199,60,449) is a solution. Indeed, there are infinitely many
simultaneous Pell equations with nontrivial solutions, as can be seen by taking
y =2, R=k?+k,and S = m? + m. Using theorems due to Siegel 4, §1] and
Baker (1], it is possible to show that the number of solutions is always finite, and it
is possible to give a complete list of them. This is exactly what we have done, for
all 19,900 simultaneous Pell equations with R < S < 200, and this paper, precisely,
is a report on our method and results.

Note that the term ‘simultaneous Pell equations’ could be defined to apply to
other pairs, such as

22— Ry? = 1,
22-822 = 1

There are other variants as well, including the ‘simultaneous Pellian equations’
solved in an article by R. G. E. Pinch [3] which overlaps this paper to some extent.
All these ‘simultaneous Pells’ can be solved using methods similar to those described
here.

Some of the simultaneous Pell equations under consideration in this paper can
be solved simply by factoring. This is the case if R or S or RS is a square. In the
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latter case, if RS = U?, we have
(S —Uz)(Se+Uz)=8(S - R),
leading to finitely many solutions (since the right-hand side has only finitely many

factorizations, each of which leads to a unique pair (x, z)). Indeed, in this case, we
can put bounds on x and y as follows:

S(S—1€)+1<S—1€+1

x| <
0 < fol= 25 7

0 < Jyl<

"
75

When R < § <200, there are only two pairs of this sort with nontrivial solutions.
When R = 3 and § = 48, we have a simultaneous solution with y = 1. When R = 2
and S = 72, we have a simultaneous solution with y = 2.

Note that if R and S have the same square factor n?, any solutions can be
obtained by solving the simultaneous Pell equations in 2/n? and S/n?.

In the general case, we proceed in accordance with the following theory. Let
(a,b) be the least positive integer solution of x? — Ry? = 1. There is a standard
simple continued fraction method for generating the integers a and b, and we used
it, in connection with Mathematica, to find a and b for all R < 200 [2, §7.8]. Let
A = a+ bVR. The largest a for any R < 200 is

a = 2,469,645, 423,824,185, 801

for R = 181. Hence, if R < 200, then ¢ < 3 x 10'%. Since «? — Rb? = 1, it follows
that bv/R < a. Hence,

A=a+bV/R <6 x 10",

Note that when R = 3, then A = 2 + /3, and this is the smallest value obtained
by A, for any R.

Similarly, if (a’,b’) is the least positive integer solution of x? — Sy? = 1, and
A =d' +b'\/S, then, assuming S < 200,

24+4V3< A <6x10'8,

The Néron height of any algebraic number is defined as follows. If r is algebraic,
there is a unique polynomial P(z) in Z[z] with positive leading coefficient ¢ and
relatively prime coefficients such that r is a root of this polynomial. The roots of
this ‘minimal polynomial’ for r are the ‘conjugates’ r’ of r. The ‘measure’ M (r) of
ris

M(ry=c ] wmax(1,p]),
conj r’
and the Néron height of r is
In M (r)
degr ’

where degr is the degree of I’(x). For example, the number A = a 4+ bv/R has
minimal polynomial z? — 2ax + 1 and measure A. Its Néron height H is thus
% In A < 22. Similarly, the Néron height H' of A" is < 22, and, finally, if £ = \/S/R,
then H" = Néron Height(E) < %lnS < 3 (since S < 200). What is important for
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what follows is that the six numbers H, H', H”, 1In A4, {In 4, and {InE are all
bounded by V = 22.
Now all the nonnegative solutions of 2 — Ry? = 1 are given by

Aﬂl + A—nl
T =Un = Tv
_ B Am — A—m
Y=Um= W»
form =0, 1,2, ... . All the nonnegative solutions of z2 — Sy? = 1 are given by
Aln + Al—n
2= Wn = ‘—’2—‘,
Am— A-n
Yy = tn = Tv
forn=0,1,2,.... To solve the simultaneous Pell equations, it suffices to find all

(m,n) such that v,, = t,. When m = 0 or n = 0, then y = 0, and we have only
trivial solutions. When m and n are positive, but at least one of them is < 3, we
have 407 nontrivial solutions. It is a routine matter to find them.

In order to find other nontrivial solutions, or to prove that we have not overlooked
any nontrivial solutions, the following theorems are important.

Theorem 1. Suppose none of the positive integers R, S, RS is a square. If K =
2+ V3 and m, n > 2 are such that v, =t,,, then

; 1
0< ImlnA —nln A/ +In EI < K—nmx(m.n) <

< Km
where E = /S/R.
Proof. f nEA™A'™" =0, then
VS(a+bVR)™ = VR(d +b'VS),
so that, for some nonzero integers c, d, e, and f,
VS(c+dVR) = VR(e + fVS)
and

VS(c+ (d— f)VR) = eVR.

When we square this, we see that d = f (since v/R is irrational) and hence Sc? =
Re%. Since ¢ and e are nonzero, this means that RS is a square —- contrary to
assumption.

For the other inequalities, it suffices to show that

]EAmA/_n _ 1I < lK—mz\x(m.n)
2
— since the slope of the log function is < 2 when x > 1/2 and hence
lt =1 < e = ]|lnz| < 2e.
Since vy, = t,, we have
Arn — A—m Aln — Al—n,
VR Vs
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so that

E(Am _ A_m) — A/n _ 14/—717
EAmA/—n _ EA—mAl—n, =1= Al—2n,

EAmA/—n —1= EA—mA/—n _ Al—2n.

If this is positive, then
|EAmA/—n _ 1[ < EA-™A"" < EK~m " < lK—nmx(m.n)
2

with the last inequality following from the fact that 2E < 20 < K3 < gmintmn),
And we get the same result if EA™A'™™ — 1 is negative. O

Theorem 2 (Waldschmidt). Let A, A’, E be nonzero, nonnegative algebraic num-
bers, each of degree at least 2. Suppose 4 is the degree of Q(A, A',E) over Q.
Let m and n be integers > 2. Let L = /mlnA —nln A" +1nE| > 0. Let V be
a positive integer greater than each of the Néron Heights of A, A’, and E, and
also greater than each of the absolute values of their natural logs divided by 4. Let
W = max(Inm,Inn) (so that e = max(m,n)). Then

L > exp(—281V3(W + In(4eV)) In(4eV)).
Proof. See [5]. O

In our case (with R < S < 200), we can take V' = 22 (see above), so that, by
Theorem 1, if m and n both exceed 2, we have

K~ mex(mn) 5 [ exp(—281223(W + 6)(6))
(since In(88e) = 5.4773), and hence
exp(281223(W + 6)6) > K°
so that
281223(W +6)6 > e In K
and, dividing by (W +6)In K,

e
1.2 x 10% > :
8 W+6
When W > 0, the function "' /(W + 6) is increasing, so this allows us to conclude
that W < 72 and hence max(m,n) < e"? < 10%.
This impractical bound can in practice be lowered using

Theorem 3 (A special case of Davenport’s Lemma). Let x; be a decimal approzi-
mation to (In A)/In A, accurate to 80 decimal places. Let f/g and f'/g' be consec-
utive simple continued fraction convergents of x1 such that g < 103° but g’ > 10%°.
Suppose m and n are as above (and hence bounded by 103%). Then, if the distance
between

glnE  InS-InR

mA 7 2lnA
and the nearest integer exceeds 3/10%, then m < 80. (If the distance between
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(ginE)/In A’ and the nearest integer is less than 3/10%, then that nearest inte-
ger is fm — gn.)

Proof. See [1]. O

Let us call the ordered pair (R,S) Davenportable (at level 3/10°) if the dis-
tance between (gInE)/In A’ and the nearest integer exceeds 3/10%. If (R,S) is
Davenportable, then m is bounded by 80. If m, n > 2, then n is the integer nearest

minA+InE
In A’
(see Theorem 1 above) so it is easy to calculate the corresponding n’s. From our
computations — carried out using Mathematica on an IBM XP 486 — we found
that there are, in fact, no non-Davenportable pairs with R < S < 200. Hence for
all the simultaneous Pell equations under consideration here, m < 80.

For each triple (m, A, A’) — with 2 < m < 80 — we checked the inequality of
Theorem 1,

;1 1 1
0<|minA—nlnA"+ 2lmS 21nR| < 2V

to see if we might possibly have v, = t,. If the inequality held, we then calculated

vUm and t, to see if, indeed, they were equal. This, in fact, did not ever occur

(with m, n > 2), so that we were able to conclude that the only simultaneous Pell

equations with nontrivial solutions and R < S < 200 were the 407 pairs with m or

n < 2 which we had already obtained. In conclusion, we have

Theorem 4. With R and S in the range up to 200, there are no solutions to the
stmultaneous Pell equations with both m and n > 2. Indeed, the only case in which
either of m and n is > 2 is the case with R = 3 and S = 176, when m = 3 and
n =1 give a solution. Finally, with R and S in the range up to 200, there are no
simultaneous Pell solutions (z,y, z) with y > 120.
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